Modulation of 5' splice site selection using tailed oligonucleotides carrying splicing signals

نویسندگان

  • Daniel Gendron
  • Sandra Carriero
  • Daniel Garneau
  • Jonathan Villemaire
  • Roscoe Klinck
  • Sherif Abou Elela
  • Masad J Damha
  • Benoit Chabot
چکیده

BACKGROUND We previously described the use of tailed oligonucleotides as a means of reprogramming alternative pre-mRNA splicing in vitro and in vivo. The tailed oligonucleotides that were used interfere with splicing because they contain a portion complementary to sequences immediately upstream of the target 5' splice site combined with a non-hybridizing 5' tail carrying binding sites for the hnRNP A1/A2 proteins. In the present study, we have tested the inhibitory activity of RNA oligonucleotides carrying different tail structures. RESULTS We show that an oligonucleotide with a 5' tail containing the human beta-globin branch site sequence inhibits the use of the 5' splice site of Bcl-xL, albeit less efficiently than a tail containing binding sites for the hnRNP A1/A2 proteins. A branch site-containing tail positioned at the 3' end of the oligonucleotide also elicited splicing inhibition but not as efficiently as a 5' tail. The interfering activity of a 3' tail was improved by adding a 5' splice site sequence next to the branch site sequence. A 3' tail carrying a Y-shaped branch structure promoted similar splicing interference. The inclusion of branch site or 5' splice site sequences in the Y-shaped 3' tail further improved splicing inhibition. CONCLUSION Our in vitro results indicate that a variety of tail architectures can be used to elicit splicing interference at low nanomolar concentrations, thereby broadening the scope and the potential impact of this antisense technology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Restoration of correct splicing in IVSI-110 mutation of β-globin gene with antisense oligonucleotides: implications and applications in functional assay development

Objective(s): The use of antisense oligonucleotides (AOs) to restore normal splicing by blocking the recognition of aberrant splice sites by the spliceosome represents an innovative means of potentially controlling certain inherited disorders affected by aberrant splicing. Selection of the appropriate target site is essential in the success of an AO therapy. In this study, in search for a splic...

متن کامل

Intronic Binding Sites for hnRNP A/B and hnRNP F/H Proteins Stimulate Pre-mRNA Splicing

hnRNP A/B proteins modulate the alternative splicing of several mammalian and viral pre-mRNAs, and are typically viewed as proteins that enforce the activity of splicing silencers. Here we show that intronic hnRNP A/B-binding sites (ABS) can stimulate the in vitro splicing of pre-mRNAs containing artificially enlarged introns. Stimulation of in vitro splicing could also be obtained by providing...

متن کامل

RNA modulation, repair and remodeling by splice switching oligonucleotides.

Targeting splicing by antisense oligonucleotides allows RNA modifications that are not possible with RNA interference or other antisense techniques that destine the RNA for destruction. By changing the ratio of naturally occurring splice variants the expression of mRNA is modulated. By preventing the use of an aberrant splice site created by a mutation and enforcing re-selection of correct spli...

متن کامل

Compensatory signals associated with the activation of human GC 5′ splice sites

GC 5' splice sites (5'ss) are present in ∼1% of human introns, but factors promoting their efficient selection are poorly understood. Here, we describe a case of X-linked agammaglobulinemia resulting from a GC 5'ss activated by a mutation in BTK intron 3. This GC 5'ss was intrinsically weak, yet it was selected in >90% primary transcripts in the presence of a strong and intact natural GT counte...

متن کامل

Restoration of correct splicing in IVSI-110 mutation of β-globin gene with antisense oligonucleotides: implications and applications in functional assay development

OBJECTIVES The use of antisense oligonucleotides (AOs) to restore normal splicing by blocking the recognition of aberrant splice sites by the spliceosome represents an innovative means of potentially controlling certain inherited disorders affected by aberrant splicing. Selection of the appropriate target site is essential in the success of an AO therapy. In this study, in search for a splice m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • BMC Biotechnology

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2006